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I. FOREWORD.

The work done during the period covered by the present Final Report
constitutes extensions and generalizations of the results found under
previcus arants and related to the application of functional analysis to
Fluid Mecranics.

The specific subiect dealt with is that of closed splines which were
introduced for the first time by the principal invec<tigator as the appro-
priate snlines to solve interpolation problems commected with the flow
fields around airfoils.

This work has lead to the followino pavers:
T. L.&.Nanolitano:A new Charactaerization of Closed Splines, accepted
for publication in the Italian Journal:Aerotecnica Missili e Spazio.

2. L.G.Napolitano:"Closed Smoothing Splines.”

The second paoer will be subtioned either to the previousiy mentioned
[talian Journal or to an Internationai Journal.
At the time of the writing of the present Final Report the final choice
had not been made yet.

The subiect Final Report contains, in extenso, the above two papers

which constitute Part I and lI, respectively, of the report itself.




PART I

A new Characterization of Closed Splines.




A NEW CHARACTERIZATION OF CLOSED SPLINES

I. INTRODUCTINN
The author has oreviously defined and studied new classes of

splire functions, referred to as closed snlines, which are the proper

splines to be used when interpolating data prescribed on a set of
points belonaina to a closed contour C [IJ .

The theory of clcsed splines was based on the Hilbert-space
anproach [2] and was thus formulated in general terms. Different
classes of closed splines can be obtained by approoriate choices
of the Hilbert spaces and of the operators acting on them,

Two anolications of the general theory have been renorted in

[I] and [3] . [1] deals with closed splines interpolating values
of a function orescribed at a aiven set of points. [3] deals with
Hermite closed splines, i.e. splines interpolatinc data representing
vailues of a function and of its derivatives prescribed at a given
set of noints.

Many other classes of closed spline functions can be considered
which solve other interpolation problems of practical relevance.

Thus, for instance:
i) The prescribed data may represent a linear combination:
I
o '
€ 4(7:) 2y CR)

ii)0ften, exnecially in the case of experimental measurements,

one does not know the value of a function at one point but,




rather, its averace value over a small inten¥al. Thus the pre-

scribed data may be of the form

/""qu@ W (£) dF

[

where (ai, bi) are the subintervals to which averaae values corre-
spond and the weightina factors Wi account for the possible
non-uniformity of measurements,

iii)The prescribed data may reoresent values of a function and of
anv number of its subsequent derivatives or, also, a lTinear
combination of them

iv) one may cornsider trigonometric spline functions (in this case

what is being is not previous cases, but the type of operator).

This 1ést is only indicative and is noticeably enlarged if two
and three dimensional snlines are considered.

For all cases mentioned above the characterization and proper-
ties of classical splines ( i.e. splines defined over a finite in-
terval)are well established.

Characterization and prooerties of ciosed splines ( i.e. spli-
nes defined over a closed cuntour), on the contrary, are established
only in the two previously mentioned cases of normal [I] and Hermite

[3] solines. A11 other classes of splines remain to be characteri-

zed and studied.

The application of the ageneral theory, as formulated in [I] .
entails a number of 1enqtﬁ;deve1ooments as esemolified by the contents
of [I] and [3] . It appearred thus desirable to further examine the
qeneral theory with the aim of reformudating it so as to make it pos-
sible to utilize, to the laecest possible extent, whatever is already

known, and available, from the corresponding classes of classical




solines.

This task would also help to shed further light on the nature and
tyoes of differences existinag between classical and closed splines.

This further development of the general theory of closed splines
is nresented in this paper for the case in which the space X is an
arbitrary space of functions defined over a closed interval.

The new formulation is first arpljed to the cases already studied
in [I] s [3] in order to further clarify the essence and actual pro-
cedure of the new aporoach.

Then, as a futher examole of annlication, the new class of closed
spline of the type (I) above is characterized and its properties con-
cisely derived. This case shows the extreme usefulness of the new
aporoach and is indicative of its application to the other classes

of closed splines mentioned above.

2. RELEVANT RESULTS FROM ABSRACT-SPACE THEOQRY.

A number of basic results of the Hilbert-space spline theory are
needed. They are concisely derived in this section.

Let X,Y and Z be three real Hilbert spaces; T: X —=Y; A:X —>7
two linear onto continuous operator and denote by < ,.>W/,
the inner product and the orthoaonal complement of the space W;
and by R(B), N(B), B' the rance, the null space and the adjoint of
the operator B. R(T) and R(A) are closed in Y and Z, respectively,.

Definition and properties of the spline space S € X correspon-
ding to T and A hinae on the following equalities:

- !
T | = < /k/ #?x:éé.: <A /{/‘X;Z(

/ | x>
< 13, S

. xeX , AeZ e




where t- :econd one follows from the definition of adjoint operator.

From eaqs. (2.1) it follows that:

1) g H'I/X%( =0 x € N(T°) (2.2)

2) <T§/TX>H:O X €N(9'> (2.3)

Consequently: i) if N(TY+ N(A) is closed in X there will always be
at least one /ké?é? satisfying eq.(2.1) for any Axé%é?(existence
theorem); i) if N(T) N N(A)= {O} this /1 is unique for any given
Ax=z& 7. (Unigueness theorem) [27 .

The equation:

Ax=z (2.4)
with z an arbitrary but fiXed element of Z characterizes the "constra-

ints’

Ea. (2.3) characterizes the spline space S C X associated with the
operators {(T,A).
- . . ﬂ/ - . «
When the space 7 is finite: ZE&R , with its usual inner product,
the operator A can be represented as a set of (n) linear and conti-

nuous operators Ki on X:

Ax= [<Ki/x>x)"‘—-/<ijx>Xj

_ n (2.5)
< )(g/x>X:2'- s Z=[=z,-----, 7% 1elk
and w -
Ly i = <K x>
CRA x>, = <A, R X2, -;zZI- A <K,
DD YS 5

L=1
Furthermore:
R(A)= 2 B L |
R (A= [vmd = A ()




and:
] ) !
dim R(AY= dim R{A )=n
co-dim N{A)= finite (2.6)
dim N{7Y= g = finite

The finiteness of N{T7) follows from the unigueness condition N(T)
NN(AY= {ﬂz and the fact that N(A) has finite co-dimension.
From the well known relation between the dimensions of subspaces
I
T L i
dimev ny = odim W e dim (W n My )-dim W,
and *ne relations holdino for a linear continuous operator with

closed rannes:

R' )= "“N"Bjj LR(B)] }\/(B) 1k
e ] L B G e

it follows *hat, for

R(A')n g(}] i (C(A') +g/mn[ N(A) n N( T)J-

Lﬂiii

- dlim N(T) = =g o

From ec.!2.2°:
<T/Té/x>j-‘—0 x € N(R)

nence 7' Ts & [N(AI N RO /s char:

Tsae RETYJNRRY
from which: unpon eq.(2.6)

Ao T(S)=m" 1 (2.8)

o S =




REMARK I
I1 essence, n is the number of constraints (2.4) which are imposed:

j.e. the number of data that are prescribed.

REMARK?Z2
The dimension of T(S) is eaual to the number (n) of data prescribed

. . . 71
less the dimension (q) of the nuil space of /

REMARK 2
The dimensian of the spline spnace S is equal to the number of data

that are prescribed.

BEMARK 4
A1l above is quite aeneral. Wphether one considers classical or closed

splinec denends on the set ove. which the function space X is defined.

3. CHARACTERIZATION OF SPLINES.

3

-

e actual nrocedure most often used to characterize classical

f

snilines of 3 aiven class can be summarized as follows.
Given the /n) operators Ki one finds the function ﬁD==7hé e J by

solvina eauation {(2.1)

l‘-/' -
Cp, Ty e £ A ey

subject tu the conditions of eq. (2.2):

n - —_—
, . Ry . V(‘: x> :0 ‘X & N/‘)
<Q4/‘>X‘.Z'*°< 7y / (3.2)

=1

whicn, in aeneral, are readi’  expressed as costraints on the/X;.
The number of these constraints is equal to ¢im N(T), i.e. to (q)
[.eo.TZ.B)J . Thus, as required, by eq.(2.8), chontains (n-q)
arbitrary paramenters. They constitute, toqgether with the (q) para-
meters invoived in aettina from y9= 74 to A , the n indipen-

dent parameters upon which s depends ,as required by eq.(2.8)2




The solution of eq. (3.I) can often be put in the form [}_]:

= /k %
L—J
- (3.2)-The (3.2)
where the,*; satisfy the (q) constrantsvaaggtions to be addressed are:

Can the known elements %/enterino the characterization of classical
(™3

splines be used to characterize the closed splines? if so, how?

4. CHRRESPANNENCE BETWEEN CLASSICAL AND CLOSED SPLINES.

The oroblem formu1ated at the end of the preceed1nc section is
arooergsJggrreiDogzg:cgoggE:é;zhi;eo?;ééés an :?erators correspon-
dina to the classical splines and those corresponding to the closed
splines.

In this section, all auantities pertaining to closed splines will
be denoted with a subscript (c).

It will be assumed that the space X refers to functions defined
over the interval [8,17].

Generalization to other cases may, in principle, be possible but
will not be cosidered here.
The set of points at which data are prescribed can be characterized

by the values Z} of a non-dimensional parameterZ . These values are

such that:

For closed splines, the 2. 's are the curvilinear coordinates alona
an arbitrary contour, C, sufficiently smooth and regular, measured
from one of its points ( C =0) and normalized with respect to its
length (2, , ~=1).The common noint of “coordinates z:ﬁZ{}}wi11 be
referred t. as closure point.
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A first correspondence is thus established, for both X and XC
are defined, unless an inessential stretchina, over the same set
{ZE:/:C',L]
The elements X of XC must satisfy continuity requirements
at the closure point whose number and nature depends on the type
of space ¥. Hence:
XC C X
The last requirement for the oroblem at hand to be well posed is
that the classes of splines, be the same. Thi: means that 5& cy
Zz < Z and the operators Tc, Ac; Tc: Xc —Y; Ac: Xc —12Z,
be the restrictions of the operators ‘T and A to Xc.
The most relevant conseauences of these correspondeces will now
be analyzed.

To beain with; from Xc €X it may follow that N(Tc) € N(T) and:
dim N(T) =g < oem N(T)=4
C
so that, if ScCXc € X is the space of closed spline functions:

. 7 - - >0L¢:%7—5 =n+4-
cimwlzﬁﬁ—ﬂf-f i () i} (4.1)
Furthermore, when <ic_¢ ﬂ there are also differences in "nature"

v ( h isfy diff i .
between y/ and 75 oecause they satisfy di ereht constraints

To elucidate this point consider the set 4 - } as a base and
dgenote by FC Y the subspace spaimed by this base. On the plansi-
ble assumotion *hat the $. 's are indipendent, F is an (n+I)-

~

dimensional space. Consider now the element f& F defined by:

p-2 ky




Co
where the /& b are now arbitrary. Clearly TSC F and, more specifi-
Cariy, g = e 7(5)i¢f the‘xgsatisfy the (g) relations:
nt -

5k

¢ =1

2

x> <O x € N(T)
X

L. < ;/x>x=o x eN(T) (4.2)

f belonas neither to7(S)nor to Tc(Sc)

The difference between j/and y/ is now evident., It is solely due

nymb e (3 -
to the smaller,of constraints imposed on the.A;by the smaller dimen-
!
sion of N{T7c) and, does not involve the y( 4. Hence it must refledt
the different behaviour of %’and %i at the closure point. For Zf the
closure point can be any noint and thus the features of %fat the clo-
sure point are the same as those at any other point. It will be pre-
sently seen that this criterion leads to the new characterization of
/

9/ which makes uses of all known oroperties of ¥ and o4

(& >

Emboed a subsnace od F into an higher dimensional space Fc such that
Tc(Sc)Cre.

Only one of the two elements Yor ' of the basis of F is rele-

nly %’ y;+4 S S

vant, as it can be inferred from the continuity conditions at the clo-
sure point.

Thus the base of Fc contains the first n element f{. On the other hand,

[ %4
in order for Tc(Sc)CFc, the dimension p of Fc must be such that once
the qc constraints (4.2) and the remainina ( q-qc) satisfied by 79
but not y/are endorsed, one obtains a (n+l-qc) dimensional space, as
(&2

required by eq. (4.1).

Hence p-qc-(q-qc)=n+l-ac, i.e. p=n+(q-qc-1).
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The element D_éi E; can thus be formally written as:

1°9 ~ (4.3)

R Y

where the %‘ must be such that TcScCFc and can usually be found,

J :
by insoection, once the expression of the 7“ 3is known.

The new formulation for the characterization of closed spline
is obtained by combining eq.(4.3) with the previously mentioned
criterion.

Let S any classical spline space defined over the interval

[0,1] and call interior point Pi any point within this interval
and extremal the left and right extreme of the interval.
The characterization of an element s€ S defines the func-
tion %fand the properties of Ts at interior points. In particu-

lar one knows:

I) the number and types of discontinuities at interior points.

2) the number and types of continuity properties at the interior

points.

Denote by iD } the set of interior point discontinuities and
by {C } the set of interior point continuity properties.
Then the following characterization of closed splines of the
same class holds:

New characterization of closed splines.

For any class of classical solines defined over a closed interval

the corresnonding closed spline can be expressed as:

_ i "
WLz 2 At 'éo B ‘é (4.4
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A

where %4 is oiven by the classical spline, 7;’ is inferred by

T

inspection and the (n+q-qu + 1 ) coefficients lA:and éivare detér-
'y
minequmoosino: at the closure point:

I) the conaruence of the discontinuites of the set .{D }.

2) the vanishina of the discontinuities corresponding to the set
rt.
Condition (1) can be exoressed for an arbitrary function h discon-
tinuous at the noints Pi:

as ( see /3] for the proof):

% [A‘./;, fg/LCPJ)]:O (4.5)

ok o= h(zl) - AL
S h(R)= hlzn) - h(E)

. . L . , ©
Oncey/= ¥Tc sc is known, sbtaining sc is a tr1w§1 matter,
<

REMARK 2
For classical splines)conditions (2) are, by definition, not

satisfied.
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5. EXAMPLES OF APPLICATION OF THE NEW FORMULATION.
The classes of splines for which the closed ones have already
been derived [ 1], [3]will be dealt with first to help clarifying

the procedure to be used.

5.1 Normal solines [I] .

Spaces and ooerators are chosen as:

e 1y 8-t TedloD

EE
<Ky x> g =x(zo)= & ; lel4,n]
S

9
where H is the Hilbert soace of real functions having square-
interarable ~?#¢ derivatives.

From LZ] one gets

i) SN _
_ _ (Z‘Q)r . J4LEn
| with:
(z-z¢) i (zrT)zo
-2, -
O if G?- . )< O

h Voo 294

iii)the der1vat1ve of order (q-1) of 7’15 discontinuous (set { D}

of dimension I)

iv) y’and its derivatives up to order ¢q-2) are continuous (set
{C fof dimension q-1I)
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For closed splines defined over the closed contour C dim N(Tc)=dim
N hi (C)=1 [i7, hence e =1.
Thus, upon eq.(4.4)

2l

9-1
) < ~
g 2): = P2

(3] d-::() ﬂffa 0{//

K

with the (r+aq) coefficients satisfying the conditions:

—-.
<
L

&
- %, A: =0 (5.1)

: (R/
el = Sy - o) (4)=0 oshegr?
X A . 5

Remarks
For conventional splines:
The conditions analogous to the first of eqs.(5.1)
ntl
Z A=
L= (5.2)

—

expresses the discontinuity /&ﬁl at the point Pn+l in terms of

—

those ( _\.) at all other points.
L

The set of equations due to the constraint X E:Af[/‘) leads to
the conditions:
R/ - ﬁa<' -
(k) ( ) ocRLy-I
(5.3)
Equation (5.2) is also a congruence condition since outside the
interval [9,1.] %/ is zero. Indeed:
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y (&), .
7, 5y )
. -/} - ‘L:_"L
L&y RV

i

S
)

(5-1)

from which eq.(5.1) follows since is constant in each sub-
- - -1) -
interval: 7‘/(‘1 ‘)(Lin):féq CZ;:)"

5.2 Hernmute splines [3]

Soace and operators are now chosen as:
! éi . U - © * [——/:
x-HY, d=HT T Dy e
v S Y= T L
‘- - ) = - N . X = X(Zc )= Co
<K,/x>x—:<£cu)-tc/ <k >X Dx(z) /
so that now dimZ= 4% (see remark I,Sect.2).

From [2] one gets: 9-2 / ‘<
g . pio -z -t g

1) f - (Z‘ZJ)+ /(6}“/),/ ) ‘75 @- /4- /(9 /

o g=g )

iii) The derivatives of order (q-I) and (q-2) are discontinuous
(set {D? of dimension 2).

s 1

Iy

ol'

iv) %ﬁnd its derivatives of order up to (q-3) are continuous (set
? CE of dimension (q-2) .

Thus, upon eq.(4.4):

- i_i v -)_(: - ’ i ) --{ 4 s 9_2_]
¢oalen K g 2l E [AelrFe ), (2,
¢ FELL L N YRRy (§-1)/ (3-2)/
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The (2n+q) coefficients satisfy the q equations:

n - 1 _
J0F S ANc=0 gcl_lfz Z‘,(;ZL"‘/(;J-O

(R) < é_f -3
%CJZ S\t =0 O £ ?

The second equation follows from eq.(4.5) [5] .
For conventional splines the /(;satisfy the (q) conditions [}:7:

2l ar- fAiet T esjes
. L L v v
[

which lead to the same conditions (5.3) at the extremal points.

The space of Hermite closed splines is of dimensions(2n).

One more class of closed solines will now be considered.It is
new insofar as it has not been introduced before. Its classical
counterparts is well known. The new formulation will be used.

Results are stated concisely.

5.3 Data are linear combinations of values of a function and its

first derivative.

The spaces and operators are defined as:
9 . _ e . r"‘T:D
=4 (c); H_,L/[C)/ =

. el n]
| ) "o ¢ €L
<K;,x23: X x (7o) + ¥ <)
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where the constants af,]fare not all vanishing. From [3] :

[

-1
VL a(ze), g (ERe
RECHE ENCALTE

ii) As the operator 7' is the same as in the previous two cases

-7

the gj will be the same.
iii)The derivatives of order (q-I) and (q-2) are discontinuous
(set {D} of dimension 2) and are related by the:
i § AR w g BP0
iv) y’and its derivatives up to order (q-3) are continuous (set
.{Cj of dimension (q-2)).

Thus, upon ea.(4.4)
v

-/ -
H) = % CJ’ + /‘ ’ .
% = é (t) -d.:_p ﬁfd‘ d"/ é:, %

where the (n+q) the coefficients ,,}isatisfy the equations:

7
%D} ) é /lL«:D : g /([ [.O(;Z; *d/.,' ]:(_’)

/
c= ¢

The relevant nroperties of these classes of closed splines are:

I) 67 1s a oolynomi£a1 of deqree (2a-1) in each open interval

(0T, T2), ==, (T Topi), - , (G, 1),
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2) glis continuous on C tocether with its first (2q-3) derivatives

3) at each point (Z:) the discontinuities of the (2g-2)-th and (2q-1I)
-th derivatives are such that:

(24-2) (cg-Y -
’XI:SL{S:Q +&SL 6_;3‘0 .VLGZ_//'”J

4) GZis such that:

L oulell,m]
vontee) o A5 peme g wielh

The set of functions of ffi(C) satisfying the first three conditions
contitutes the n-dimensional closed spline space Sc.
The uniqueness conditions read [37 :
% x(z;)’“&'%/éi: yoelynd
[
H(2)=0 ' ze C

imply (Z)= O

6. Concludinao remarks.

A new formulation for the characterization of closed splines has
been derived.

This new formulation makes it possible to use a number of facts
already known from the theory of classical splines and helps gaining
a deeper understandina of the differences between the two types of
splines.

The apolicatio of this new formulation is esemplified for three
classes of sptines. Two of them had already been derived [& 1,
[2]with the direct approach. They have been considered in order to
further clarify the essence of the new formulation.

The ¥est third class has been deduced here for the first time.
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The new formulation by passes lonc and tedious developmentsand
makes it almost immediate to deduce the closed spline counterpart
of known classical splines.

The new formulation concerns only the characterization of closed
splines. A1l other relevant properties ( existencg/uniqueness;
extremal oronerties eauivalentgwith a minimum problem) are those
exod;ded and discussed in the original derivation of the theory

[I] and have consequently not been repeated here.

~-
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PART 11

Closed Smoothing Splines.
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CLOSED SMOOTHING SPLINES
[. INTRODUTION

In computationsl aerodynamicsit is often necessary to solve interpol
tina oroblems related to airfoiis, i.c. to closed curves.

Usino classical spline functions to interpolate airfoil’s ordirates
nrescribed on a finite set of points is unsatisfactory on many
important acconuts, as fully discussed in [I]. Similar situations
arises in all other interpolating probliems. The case of Hermite
<oi'ne functions ( the data to be interpolated represent values of
the functions and of its first derivate at a given set of points)
was discussed in (2].

The main short cominas can be briefly described, in ceneral terms,
as follows. 'Yhen the data to be interpolated are prescribed on a set of
fv+{) ncints theloncing to a closed curve (e.g. the airfoil) and
conventional snlines are used, then the first and last points must be
taken as coincident Q;+f é% (closure point-usually the airfoil's
trailinc edce). As a consequence:
ijunwanted (and unnecessary) discontinuities are introduced at the

closure noint;
iiYa number of derivaties of the unterpolatine spline vanish at the
closure noint and this may turn out to be too oenalizino <n practical

annlications, especially with splines of low order;
iii)the decree of smoothness of the interpolating function is neither
quantificable nor uniform over the closed contur with the accuracy
beina verv noor at the closure point;
iiiilthe internpolation function does not satisfy any minimization
oroblem and thus all the advantages "comected with this fact are
lost.

To overcome all these shortcomings the author developed a theory

for a new classes of splines, referred to as closed splines (I],

based on the aeneral abstract-space spline theory detailed in (3).
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The abstr-act space aoproach presents the following main advantages:
i) existence and uniqueness can be proved; ii)general characteri=
zations of the splines can be given; iii) the equivalence between
an interoolation problem and a minimization probliem can be
estaolisned: iiii) extremal and other important profierties of the
splines can be demo§?ated.

This paper addresses, with the same approch, another important class
of prodlems of frequent occurrence in computational aerodynamicg§:

nameiy the one solved by smoothina spolines.

To clarify the issues involved, consider the case in which the
data to be interpolated represent the values &’ of a function at
a civen set of points&Q;.

In many cases the data prescribed are not exact but approximate,

i.e. affected by either errors or uncertainties. It thus makes
1ittle sense to have the interpolating function f assume exactly the
values ¥ at the points &/ and one would rather like to achieve a
sgétab1e compromise between the "smoothmess" of the interpolating
function and the "approximation" of the prescribed data Z-.

The classes of splines achieving this compromise are called

“smoothina™ splines.

The formulation uf smoothing problems solved by classical
Smoothinag splines and their properties are well known (3} and can be
summarized as follows.

Given a closed interval, reduced throuah stﬂkab]e normalization
to [f% iJ; (7 t1) points @(2z;) with:

~—

D= 5, ¢ T < - == <¢n<?n+1:j

and (nel) real numbersz:(/ﬁ.&:én+l)n the smoothing spline function
of order g4 (n+ 1) cirresp onding to the set {TQ,Zagﬁ where @ is a
positive constant, is the unique function G:é}quél]which solves the

following minimum problem:

{ { ({C‘i), ]Zg/z+§f[q?(7‘)‘z"']af
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where HT})LLS the Hilbert space of real functions ?(z) defined on
}jc,‘)ij and having a square-intergrable E{ﬂderivative f@.} The space H
quantifies the degree of smoothness, the coefficient‘9characterizes
the relative importance that one assignes to the smoothness and the
approximation of data.(More generally, different weightsgﬁcan be
prescribed for each point). -

When one sets f(Z2) =Z-the minimum problem (I.I) reduces to the
one pertaining to the interpolating splines [1,3] and, for gq=(x+/)
the interpolating spline is the unigue polinominal of degree (% *t/)
passina throughthe points f(Zl}=Z-.

Smoothing and interpolating splines beiong to the same subspace
f>c}f%f real functions s (®) defined on [b)i]and such that [3]:

a) s{(#) is a polynomial of dearee (2g-I) in each of the open intervals

(e, Toth) [ieC £nt1)

b) s{ ) and its first (2q-2) derivatives are continueas on [ 4]
C) the derivatives of s( <) from orders q to (29-I), included,
vanish at the oointsé{(ﬁ=0) and an+, (Z?:(}

The interpolating spline for the set {4$fis the unique element 51
of S such that: o (cc)=& ,¥ieli, n+]

The smoothing spline ofor the set it%?fis the unique element of S

such that:

o [t.-Tzi)]=nTeo
where: E(:Q:'(Zéi _,): E)_\:@q-l]CZ;r) _%(zq—/) (Z,'L.")

(259 Yl elCynt]

is the discontinuity (jump) of the (2q-I)-th derivative ofé;at the poin
€

Since the smoothing spiine belongs to the same space S as the
interoolating spline, it is evident that when the set of points belong
to a close? contour, smoothing protlems exhiQE}t ail the previoully
mentioned shortcomings.

Thus the need for developing a theory of closed smou.ning
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splines exists and is substantiated by the same consideration
that were made in[ﬁ,Z] when dealing with interpolation problems
on closed curves.
In this paper the general theory of closed smoothing splines is
developed. It forms the basis for the subsequent consruction and
study of different classes of smoothinag splines( normal, Hermite,
Fourier,Trigonometric, local averange and so forth[Bj).
As a first example of application of the general theory, the
normal closed smoothing splines, corrisponding to the problem
discussed above, are derived and their properﬁés studied.

As in L!] and [élj, the presentation does not follow the logical
order. To facilitate a more dee spread comprehension and use
of normal closed, smoothing splines their definition,
characterijzation and properties are first stated without proof
in section (2). The general Hilbert space theory of closed
smoothing splines is then developed in sections 3.
The last section 4 presents the proof of the statements made
in Section 2 concerning existence, uniqueness/characterizaticn,

extremal and other relevant properties.
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2. NORMAL CLOSED SMOOTHING SPLINES.
2.1 DEFINITION

Let C be a sufficiently smooth and regular closed contour.
Denote by zZ7the curvilinear coordinate along C measured from an
arbitrary initial pointéaand normalized with respect to the
lepgthof C so that 0¢ZT<4. The point8will be referred to as

the closure point of the contour and it is characterize?d by

either values 2=0Tand 2=/ of Z.
Consider (n) arbitrary succesc<ive points Q. 1£¢ & 7 ) on
C, let Z-be their curvilincar coordinates with:

D 2T < Ty <Tqy ---= < T ¢« 1

and oreccribe n real numbers (%:) and a positive constant ¢ -

The closed smoothinog sp]ine(T@Jof degree (g) corresponding
to the ( n) conples ( Z., 2. ) (/1¢C£7) is defined as the
unique element of’ﬁ% C) such that:

%[@9’@:)] e + S’Z [ste)-e:]=

(, f {éwﬁ@)]ifg +g>&2_:]—t [VF (z;)'t,:]zf
gefﬁ@

In order for G'éf+(C) to be such a closed smoothing spline

(2.1)

it is necessary and sufficient that:

a)(T@ﬂbe a polinomial of degree (2q-I) in each open interval:

(O:’v Zz)/---J Ctb-/z;"f/]/ - (Z—*/J)
)CQ?)be continuous on C together with its férst (29-2) derivatives, i.e

k), -
o +):G, (47 ykelo29-2]
O'(R}(Z’; f):G_QL)CZ;-) . ¥i e[z, 7]

(2.2)
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07?9 be such that: ]
pl e -s(ze)] = C~1)U~-C~J§S~r /-ﬁeu,nj

(2.3)
where: 5 - @ —!) @ﬁf //( ) Q“?'”ng.‘)

he discontinuity of the (2q-1)-th derivative at the

-

e - -
Ao o3

[ @]
c+

point Ey, the discoutinuity at the closure point being defined

. > §— 24-1) 29-1) -
as: S, 6’@&} - ?‘1 COU‘O"( (ij
The set of functions 3 é/% ) satisffing the first two conditions

constitute the space S .of the closed spline functions correspon=
ding to the set {Z;} S& is a subspace of Hf of dimension (n).

Interpolatina and smoothing spline functions relative to the set
{’Z }are subspace of the same space S

“lc)
For Interpolating splines a®e replaced(Dy the conditions

()= 2o (14 f<m).

2.2 CHARACTERIZATION
Introduce the function[ﬁ]:
! _ 26-1
- zay-/ g@—a) if (T-72)20 (5.4

@ ﬁ/ ; o if T-Z. <O
An element bé&”{C) belongs to the subspaceS of closed

spline functions corresponding to {Zjiffit is representable

as: 41 - o248 l
(t)‘ ?— ? KASE Z ’( - (2.5)
d / -{ @6{-/)
where the n coeff1r1ent,iand thedq coeff1c1entsf{satisfy the
fo11ow1no (2a) equations [I] /
2{ A ' zq ka -

12 *c B S -0(2.6)
UU = Z__f__.’i__" -c) ¢ —r
-%15 d-.:o Q‘*/)‘/ (,-el JICZ?_){-]J)

o <k 29-¢

_—J
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The function defined by egs. (2.4) is continuous on C together

with its first (2q9-2) derivatives. Its (2q-1)-th derivative is

discontinuous at Z=22, the discontinuity being equal to (Zq-I)![ﬁ] .
The (2q-1)-th derivative of 5C§)is given by:

{24 '}(z)_ B,. ‘.-. c(7-z)°
Hence it is piecewise cons?ant in each open sub-interval and:
L

25-1) ,
5(;5)“?&:1_Ir‘~>:/ A’/ in CZL'/Z”LA(,)/' /S.Cfﬂ“/

(29-1) :
1 = ?2‘, -, in CZ

Thus the (n) coeff1c1e3tsx represent the values of the
28- 4
d1scont1nu1ty of 4" at the points &k 41
Y Ll f)_ ATty AT (7
Since for o—l 1t is %1 ¢ and ?_ 1 :
>4 - ~/ -
516@, e @A p ) UG A
The closure pointé%is thus in no-way differentiated from the
other (interior) points.
Given (n) arbitrary real numbers (%) and a real constant
g there is a unique closed smoothing spline corresponding to

the sets % {?Z} @ such that:
r - Zﬁ-l! /L s
p e~ 5[’:;)]:(-1)?/(;; («;)?S;s( 5 ifeEn (2.8)

Consequently the system of (n+t24) equations(2.6),(2.8),
linear 1nﬁ,and,4 admits of a unique solution. When the n+29 coefs" -~
ficients apoear1nq the eq are so obsta1ned A(t) becomes
A pRime T(z) '»o*b\/i Wg»
the unique smoothing¥problem I)

When eqs. (2.8) are replaced by the equations:
ACZ. )= &, 1£.sn

the solution of the system formed by these equations and eqgs.(2.6)
is still unique.The new coefficients , thus derived, when
sostit@?d in eq. (2.5), define the "nique interpolating closed
spline 5°&)which solves the minimum problem[1]:

‘(S} PA . » z‘: . 4’~_47L

B l'de;,  flei k7o) el )
formal]y obtained from the problem (2.1) by setting O (%J)="§<,

ﬁ(t, ; ‘VI: 6[/,%_]_
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2.3. PROPENTIES

The closed smoothing spline G corresponding to the set‘{Z;t{/9}
has the properties a),b),c), described in section(2.1).
Plus,, obviously, all nroperties of closed splines. Thus, for
instance, the first of equations (2. 6) Zigtssents the congruence

conditions for the d1scont1nu1t1es O 5T 2], for any element A& X
and any function <£€ H @i)the fo110w1ng relation holds [ 1],

e %;ﬁ/(t)éfméz)‘?/? =(-1) _&I A, f[z
(&4

Iyaﬁjgslxuz =0 v e L= Z(ch ﬁ?(c)
/ QQ(&) o vioell,n] _;

When 4 s a closed smoothing sp11ne 6‘ eq. (2.3) holds and

(2.9)

(2.10)

eq. (2.9) becomes:

¢ &V e= 2 Z [t otz)] §(e)
and eq. (2.I0) still holds fors=6G",
The minimum problem solved by G7(Z) is a particular case of the
following more general extremal properties.
Given (n) arbitrary but fixed (Z), if @ is the uhique element of
%such that: 4 éz?—l)
9[1:;*6'(2;)]:6/) &
then:
a) for any f & ( )

5{915“5’ é@c?zjgyz- ffa | e )-o(z:) ] =
2 _n9 24-1) (2.11)
- ?%Lﬁwlfqufz.pfz Zg(Z') ¢ +C) %% ]_‘Z

AC:S
and G is the unique element having this propety.

The original minimum problem(2.I) follows from eq.(2.12)

for s=o.

e
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2.4. COMPARISON WITH CLASSICAL SMOOTHING SPLINES.

The classical smoothing spline over (n+4| ) points é%is repres=
sentable as L3 1

. ~ 2%-[
=~ 20 (e
Gl7)=< 9’3};{ TP (z-%h (2.13)
J=v 'd ’/V ey 626)_,)'/
the (nr 9) coefficients ’,/&'represent the unique solution of the
following system of EQuagions:
nei “*
£ [l vt ocke(f1)
ez (2.14)

o a
¢ [e-F (ze)] <()T K 1eeen!
The space g.of classical splines is the set of all ;bf the form
niven by eq. (2.13) with the coefficients satisfying only the first
(q) egs.(2.14).
When eqgs. (2.14) are used for the set of points belonging to 2
closed contour, Q;Qnﬂ and "ZF’C”,,. Since the coefficients 5): ,:(f'
in eq. (2.13) are uniquely determined it follows that:
i) at the closure point ((Q.‘-Qﬂ.ﬁ ) the condition Z=#£, ,quaraktees
only the continuity of 6:C§) : its derivatives, up to the order
@i—l)included, will not be continuous(uniess the problem's data
sati8fy very paricular synmetry conditions) and their disconti=
nuities are uniquely determined.
ii) the subsequent derivatives, up to the order (2q-2), are
continuous but vanish identically (see sect. I.)

This has to be contrasted with the closed smoothing spline
which is continuous throught together with its first (2g-2)
derivatives, the properties at the closure point being in no-wey
different from those at the other points.

The classical smoothing spline has (q+n +() parameters: if one
introduces (4 -/ ) additional parameters to impose the missing
continuity of the (q -/ ) derivatives at the closure point, one
would get a function with a total of(q¢mn+i )+ (§~/ )=(2q9 +n)

parameters. These are indeed the number of parameters appearing

M
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in the definition, eqg.(2;5), of the closed smoothing spline. This
rather naive approach does not however indicates how the additional
parametersshould be introduced, what systemof equations should be
formulated for their unique determination(clearly the greatest part
of eqs. (2.14) cannot be retained) and, most important of all, no

kintc cnuld be obtained as to how to determine the properties of these n

functions.
The obstract approach, leadina to the results presented in

sections 2.1 through 2.3, provides in the more natural and correct

maimer the answers to all questions above.
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3 THE SMOOTHING SPLINE THEORY IN ABSTRACT SPACE

3,/ ARBITRARY HELBERT SPACES.

The needed basic results of the HéJbert space formulation of

smoothing spline function theory are summarized here for ready and
convenient reference ( sec [3] for greater details).

LetX,Y,Z, be three real HéJbert spaces with norms ”‘//x-;
g ”3; Il HZ; and let 7' X=>J ; A: X=>2 be two linear
continuous ooerators which, without any loss of generality, are
supposed to be onto.

Given any fixed Zé‘:Z and any real constant g>0 consider the

followina minimum problem {//Txuj +§>W%<-Z//:{_JZ (3.1)

| Telly FS 4 Aoz l>= ;"g"‘“
The e]ement<Y&Xﬂ1f it exists, is called the smoothina spline

corresponding to (/,P’/ Zlg)
Introduce the Helbert space P, cartesian product of Y and Z

endowed with the scalar product:

T = < > {(2,,2 >,
<F./Pz>f 3,/ 7. yt§es Tz (2.2)
where <, >F denotes the inner product in the Helbert space F.
Then if L) X**fjis the linear continuos operator defined by:
x:[T;(/AXjéP C303)
and if:

b - [oz]el
where 0 denotes the null element of Y, the minimum

problem (3./) can also be formu]ated in the space P as:

= - 3.4

[Lo=Felp = mor [ix-Plp (3-4)
where H-[{Pdenotes the norm of P associated with scalar product
(3-2). -




s
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The followino existence and uniqueness theorem holds.

THEQREM I. The solution of problem (3,() exists for any 2 € £
iff N(TJtN(R) in closed in X and is nuique iff, in addition,
N(CT)n N(R) ={0f. Here N(B) denotes the null space of the

operator B.
The characterization of the smoothing spline function is given

in the following theorem.

THEOREM 2. Under the hypothesis of theorem I, & Xis the
smothina spline corresponding to(T,A,Z, §) iff: __)
<,Lw~h)Lx}P=o ¥ xe X (33
Thus the smoothing spline space S is the subspace of X defined by:

SzéseX/<Z’—5‘f’°/U>f :O/VXEX} (36)

or, equivalently, on account of the definition of the adjoint of
Ly by:
\ / - J
S -sex| s RV
(3.9)

where the prime denotes, here and in what follows, the adjoint of
an operator; R(B) is the range of the operator B and the adjoint
L' of L is defined by:

L'p=Ty+gR=; p=lpz]el

(3.%)

The second definition follows from the first one on account of

/
the oroperties of adjoint operators and of the fact that £ ﬁ,:

= f’plz. & R(H'}
If 4 L' _o ¥xel
<La-po,lx>p =< Lils~Lfp x2p=
=> 4/14-‘-4/[30 .
From the definition (37) it also follows that:
L'L(S)=R(F) (3.9)
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REMARK 1I.

It can be realy shown [X] that S does not depend on (¢ ) and it
Sh
thus coincides with the spacerf the spline fonctions defined by

the operators T and A.

THEOREM 3. For any fixed 2&JZ there exists a ooique element ce X

such that:
1L = Z
ho *g Bos o oo,
B:ro5~><Z B :ZCP ’) /o

Thie space S %an be characterized as 37 :

5¢:{AGX/<TQ,T)(>\_{ =0 ; VX'EN(M}

where N (» ) denotes the null space. Hence ACE S* iff:
774 c[NBIT = R(A')
TIT ()= R(RA)
and, upon eq. (3Y), S¥= S since L/lé‘Tlfé 8 /)/,Q 4 and
gﬁ’ﬁséR(ﬁ'J
~i

Wreres (- ) denotes the inverse of an o’ rator.

Hence:

REMARK 2.

The corresponding theorem for interpolating splines ensures the
existence of a unique element & S such that AT =2

The characterization of a smoothing spline which leads to its
pratical evaluation in contained in the following corollary of

Thorem 2.

o <
COROLLARY (Characterizatioq)@# smoothing soline corresponding to

(T.A,z, 9) iff there exists A€Z suych that:
T'Te =A'4 5 A=g(2-A7)
(3-4)

Indeed, from eqs. (3.2) and (3.8)~
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Ll/,. _ L/fﬁ; ; Z.O'==ZTZf) /)617

from wnich eqs. (3il) follow with A= 9(2‘/30’). The first of eqs.
(3(1) shows that fw/( € QC77='NCT)L) where ( )L denotes the
orthougonal subsoace)and the second equality follows from the
properties of adjoint operators.

The estremal properties of the smoothing splines are condensed

in the following theorem.

THEOREM 4. If 2 is an arbytrary but fixed element of £ and Gis the

unique elemente of S satisfyina the condition (3f0), then:

a) for any ¥ &5S: | )
HTCT-Q)ngg//ﬂw-z *g‘BQ”Z =

- m’)r(ui/[' T -9l g r9//ﬂx-z+i§85//z ( 3.02)

X
and 7 is the unique element of X having this property.

The minimum problem (3,]) follows from equation (3/2) when(s) is

taken to be the null element of S.

REMARK 3.
The corresponding extremal properties of the interpolating
- C X
splines L f,2-] are formally recovered by g}ting g:Oand B the

null operator.

2, LFINITE SPACE 7

For the case of specific interest here the number of
“constraints” is finite. The space Z is consequently finite
and, accordina to thorem I, existence is automatically

guaranted whereas uniqueness requires that N(T) be also finite.

LV
Sunpose then that £ C R. » With the usual inner product, and
that N(T) is of dimensious§ . Then [37: '
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a) the operator A can be expressed as: w
- 3./3
D ~[ <KD, , -, <3 JER C3:13)
where the Ktare W independent linear continuous functionals on X;
b) if:
n
- /zﬂ]G.Q

£= [k, e,

then: W ;
Ale = & K (3.14)

¢) the following characterization theorem holds (see Corollary):

THEQREM &. TYf,X is the smaothing so?iie corresponding to (T, ﬁﬂ

-

< g) iff there exist n coefficients .i;such'that:

- , L
7Ty == ke e N(T)
=1
- . ) el .,
/hflfLZJ- <}Q}Tj§,] J t=h (315)

REMARK 4.

The corresponding theorem for interpolating splines is formally
racovered by replacing the last (n) conditions in egs. (3./5) with
the conditions <o = < K“"T>X.

Upon the remark [ the first equation characterizes the spline

,

space S corresponding tc (T, Kl). Hence:
A Tl - [ L”
B A -66‘) TTa= e Z=R
and the extremal properties of the smoothing splines described by

Theorem 4 can be formulated as:

THEORE™ 6. If Z in an arbitrary element ofZand & is the unique
element of S satisfying the condition (3/5}$ , then:
a) for any x ey

P 2
[Tl ve £, [<He, x-o3, | =

e




“
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= rm g/}}-(a-x)//y s %_ [< K;/)(;)(-zb- #E)/E;]lj @,/6)

Ae S e=

and any otherfTélg havine this property belongs to the set:
20} = +N(T)
b) for any A &S 7

—

- : Az 72
UT (5=l r§ Z LEKG T 72 # -

= e f// T()(-ﬁ)//y *Fé [zk;/xi/-z; +_§/_‘_<,]7

x eV

@77

and §is the unique element of X having this property.
The different classes of smoothing spline functions that can be
obtained from the above abstract formulation depend on the choice

of X, Y Tand Ko
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&, NORMAL CLOSED SMOOTHING SPLINES. EXISTENCE, UNIQUENESS AND CHARACTERIZA

Let C be a sufficiently smooth and regular closed contour. Take
. 0 . . .
X:;hﬁ(C) and ﬁ=}f(c> with their standard inner products. Denote
by & the curvilinear coordinate along C measured from an arbitrary
point S%and normalized with respect to the Tencth of C.
- 9()>\"—H° . .
ror the operator /[ ¢ X==f1 )= 1= @jtake theﬁ-té derivative
'R R %

Dgwith respect to (z ). For ZC R iet the n functionals K;:ff?(c)oﬁ

i
be defined by: i
= x(Zo)= & (&L

(4:1)

with
O£ <, < T €Ty < E

The null spaces of the operators A and ! are then given byllfji
N(p,)._.ixej-}?&:) / ZA/\;/x)#e:;((’z;#o ;Le[/,w]_é
N(T) = {{eﬁ‘ (c) / X -Of—z})(é/'/ ()/

Hence their dimensions are equal to (n) and to (1), respectvely so

that  Y(T)n N(P)={of orovided n>{ . The operator L=#1(c)=P=
= Hﬁ(C)@ﬁo(Cjis defined by:

ZK;[@ )(/ AX]:[D%Y/X(?'/)J X(,?z),----/ X(T"]J (4'4
so that: ]
- ) .
Ls-F. = /5, (%) =2,, - ==, X(Ta) -

The minimum problem (3.f) reads:

g 1z rp 2 [ty 22T
. ﬁ L

: PN _{9(1:)((%]‘0/2" Ff ’%. &X(TJ} tu] Z}
xefie) L e

and, accordina to theorem I, it has a unique solution, for any r,

+4)

as lona as n» 1.
The existence and uniqueness ofg{Z ) is thus established.

[ts characterization is accomplished through theorem 3.
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Ry
From aq. {35 with «4;-6{}‘40; and from eq. (4) one has,

subsequently: "

9 . = /( x(Zi)
< B DT x g% = CVICAL 2y 45 €)'’ Z, (4.5)
7T s ¢ Hi)
., (44)
ChTAcspm - T ] g rteEm
where, acccrding to theorem 5, the-i;must satisfy the condition:
S <A K- x>m yxe N(T) (4.2

4
stating that (Dq 1176’) must belona to M(T).
N As dim N[T)=4, eq. (4.#) reduces only to the requirement that
;Z’A;VE be[fqorthogonal to unity. On account of eq. (4,5) this

z, Ao s) (48)

The characterization of a function § satisfying egs. (4.5) and(4 8
was developed in@. ]
when dealing with closed interpolating splines.

This finding is consistent with the fact that, as mentioned
in paragraph (3), the space of spline functions corresponding to
( T,A) is tne same, whether one deals with interpolating or
smoothing splines [3 1.

The details will not be repeaqted here and only the relevant
results will be stated.

The function 64')can be expressed as:

q_l . e 7-’
TQ/Ct)—J;—Z‘_’ " _.T—- 12" A LZ Zo)s (4:9)

=/ }/
where the (nt coeff1c1ents rand J sat1sfy the(§ ) equations{l:l
T 7

p-t - . + .
= Z&ﬂ*(—l)q‘*d"d]:ﬂ /' /éffs‘/

2 - : G40
X

,Z /lc’:O

=1




4,10 (-‘”
Eqs\ express the vanishing of the discontinuities of O and of its

first ((3-2_ ) derivatives at the closure pointQ‘characterized by
either values Z=o or T=1" ofC.

The function GGH given by eq. (4,9 )is continuous on C to=
gether with its first ( ) derivatives. The discontinuity:

g O,-Cl‘;i“) (—Ca‘? )C +) 6'(2‘3"‘) )

(93

of the &-/ /- Z’,{ derivative of o'm/at the point &is given by:
g .

2g-l)= /l ]
‘ (442)

The other n equations needed to compute the (‘n+? ) coefficients
BH& and J;are given by eqs. (4.6).
Accordmg to, eqs. (3.6), (33) and (4.5) and the definition (35) of

#1e)]

1nner\("ﬁ P the space of closed sp]1ne§1s defined by:

Scz{ge H?(C)Vb,ic\. BSO +j72_ [oczv) Kk Jx(z)=0; ¥XE

Hence, for any x €& H?(C/) no -

&) Wofr + § & [ 3(z)- te Jx(z2)
r, (4
0 vaccount of eq. (44): ﬁdﬁl (Q)Q/Z C’/9Z l x(z

This last relation is the same as that der1ved in Li]and once again
reflects the fact that the space 'Scmakes no reference to the type
of closed spline, whether interpo]ating?mooth'ing.

The closed smoothing spline G'GSC is obtained by integras=
ting eq. (449) q times and using the arbitrary constants to impose
the continuity of & and of its first ( :5)-—/ ) derivatives at the
closure point &, so as to make O"é/-/?(C).

The extremal properties formulated in section (4 ) follow
from theoremen 6 with = Dﬁ and :\.;:é//y,given by eq. (4.8).

;———_—-———-J
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This concludes the proof of the statements made in Section 1
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